Расчет на продавливание фундаментной плиты пример
Stroimaster-nsk.ru

Строительный портал

Расчет на продавливание фундаментной плиты пример

Пример 2. Расчет фундаментной плиты на продавливание.

На фундаментную плиту на естественном основании опирается колонна, передающая нагрузку от здания. Требуется выполнить расчет фундаментной плиты на продавливание согласно п. 3.96 Пособия по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры к СНиП 2.03.01-84.

Толщина плиты 500 мм, расстояние от грани бетона до оси рабочей арматуры 45 мм, класс бетона В20 (Rbt = 8,16 кг/см² при коэффициенте условий работы 0,9), вертикальное усилие в основании колонны N = 360 т, сечение колонны 400х400 мм, расчетное сопротивление грунта основания R = 34 т/м².

Определим h₀ = 500 – 45 = 455 мм.

Площадь верхнего основания пирамиды продавливания равна площади колонны 0,4х0,4 м.

Определим размеры граней нижнего основания пирамиды продавливания (они одинаковые): 0,4 + 2∙0,455 = 1,31 м, площадь нижнего основания пирамиды равна 1,31∙1,31 = 1,72 м².

Согласно пособию, продавливающая сила равна силе N = 360 т за вычетом силы, приложенной к нижнему основанию пирамиды продавливания и сопротивляющейся продавливанию. В нашем случае такой силой служит расчетное сопротивление основания, равное R = 34 т/м². Зная площадь основания пирамиды, переведем расчетное сопротивление в сосредоточенную нагрузку: 34∙1,72 = 58 т. В итоге, мы можем определить продавливающую силу: F = 360 – 58 = 302 т.

Определим периметры оснований пирамиды:

4∙0,4 = 1,6 м – периметр меньшего основания;

4∙1,31 = 5,24 м – периметр большего основания.

Найдем среднеарифметическое значение периметров:

(1,6 + 5,24)/2 = 3,42 м.

Определим, чему равна правая часть уравнения (200):

1,0∙8,16∙10∙3,42∙0,455 = 126 т.

Проверим, выполняется ли условие (200):

F = 302 т > 126 т – условие не выполняется, фундаментная плита не проходит на продавливание.

Проверим, поможет ли нам установка поперечной арматуры в зоне продавливания. Зададимся поперечной арматурой диаметром 10 мм с шагом 150х150 мм и определим количество стержней, попадающих в зону продавливания (т.е. пересекающих грани пирамиды продавливания).

У нас получилось 72 стержня, суммарной площадью Аsw = 72∙0,785 = 56,52 см².

Поперечная арматура на продавливание должна быть либо в виде замкнутых вязаных хомутов, либо в виде каркасов, сваренных контактной сваркой (ручная дуговая не допускается).

Теперь мы можем проверить условие (201), учитывающее поперечную арматуру при продавливании.

Найдем Fsw (здесь 175 МПа = 1750 кг/см² – предельное напряжение в поперечных стержнях):

Fsw = 1750∙56,52 = 98910 кг = 98,91 т.

При этом должно удовлетворяться условие Fsw = 98.91 т > 0.5Fb = 0.5∙126 = 63 т (условие выполняется).

Найдем правую часть условия (201):

126 + 0,8∙98,91 = 205 т.

Проверим условие (201):

F = 302 т > 205 т – условие не выполняется, фундаментная плита с поперечной арматурой не выдерживает продавливание.

Проверим также условие F 2Fb = 2∙126 = 252 – условие не выполняется, в принципе, при таком соотношении сил армирование помочь не может.

В таком случае следует локально увеличить толщину плиты – сделать банкетку в районе колонны и пересчитать плиту с новой толщиной.

Принимаем толщину банкетки 300 мм, тогда общая толщина плиты в месте продавливания будет равна 800 мм, а h₀ = 755 мм. Важно определить размеры банкетки в плане так, чтобы пирамида продавливания находилась полностью внутри банкетки. Мы примем размеры банкетки 1,2х1,2 м, тогда она полностью покроет пирамиду продавливания.

Повторим расчет на продавливание без поперечной арматуры с новыми данными.

Площадь верхнего основания пирамиды продавливания равна площади колонны 0,4х0,4 м.

Определим размеры граней нижнего основания пирамиды продавливания (они одинаковые): 0,4 + 2∙0,755 = 1,91 м, площадь нижнего основания пирамиды равна 1,91∙1,91 = 3,65 м².

Согласно пособию, продавливающая сила равна силе N = 360 т за вычетом силы, приложенной к нижнему основанию пирамиды продавливания и сопротивляющейся продавливанию. В нашем случае такой силой служит расчетное сопротивление основания, равное R = 34 т/м². Зная площадь основания пирамиды, переведем расчетное сопротивление в сосредоточенную нагрузку: 34∙3,65 = 124 т. В итоге, мы можем определить продавливающую силу: F = 360 – 124 = 236 т.

Определим периметры оснований пирамиды:

4∙0,4 = 1,6 м – периметр меньшего основания;

4∙1,91 = 7,64 м – периметр большего основания.

Найдем среднеарифметическое значение периметров:

(1,6 + 7,64)/2 = 4,62 м.

Определим, чему равна правая часть уравнения (200):

1,0∙8,16∙10∙4,62∙0,755 = 284 т.

Проверим, выполняется ли условие (200):

О чем? О банкетке, выпирающей вниз вы не почитаете нигде, т.к. если достаточно такой банкетки, то зачем плита вокруг?

О расчете столбчатого фундамента – в пособии по расчету столбчатых фундаментах есть примеры расчета.

Сваи по тому же принципу считаются – по площади опирания. Но в сваях есть еще боковое трение, добавляющее несущую способность.

Пол и фундаментная плита – слишком разные вещи. По стоимости в том числе.

Да, не имеет смысла.

Добрый день, Ирина.

Необходимо собрать нагрузки на перекрытие и основание лифтовой шахты для обустройства помещения под шахтой.

Дано: Пятиэтажный дом с подвальным помещением 50х годов постройки. В проеме между лестничными маршами (тип Л-2) встроена сетчатая шахта лифта. Лифт имеет кирпичный приямок (190х140 см) с установленными пружинными амортизаторами, приямок опирается на прямоугольное основание из пустотелого двойного кирпича (толщина стенок 25 см). Основание связано по периметру стальным 65 уголком, внутри засыпка из грунта и строительного мусора. По грунту отлита бетонная плита (дно приямка).

Задача: усилить основание приямка и сделать в нем подсобное помещение.

Мои рассуждения по этому вопросу:
Из того что нашел по нормативной документации, это ГОСТ Р 53780-2010:

“5.2.5.6 При наличии под приямком лифта пространства (помещения), доступного для людей, основание приямка должно быть рассчитано на восприятие нагрузки не менее 5000 Н/м2”

“б) под буфером противовеса или под зоной движения уравновешивающе го устройства должна быть установлена опора, которая доходит до монолитного основания и способна выдержать удар противовеса или уравновешивающе го устройства, падающего с наибольшей возможной высоты.”

Предположим вес лифта 1000 кг, плюс противовес 1500 кг, плюс направляющие и сам приямок пусть 500 кг. На случай аварийного обрыва противовеса с максимальной высоты (15 метров) имеем воздействие на опору 220500 Дж. Возможно в лифте есть ловители, но вопрос в их работоспособнос ти, поэтому считаю по максимуму.

Достаточно ли будет усилить дно приямка двумя двутавровыми балками 16М, плюс усилить периметр 100 уголком?

Расчет фундаментной плиты на продавливание – условия и процесс выполнения

Основной функцией фундамента является принятие и равномерное распределение на грунт нагрузок, поступающих от наземной части здания. Чтобы конструкция оказалась работоспособной и не чрезмерно массивной, на застраиваемом участке требуется провести гидрогеологическое исследование грунтов и выполнить проект фундамента, исходя из конкретных условий. При его разработке учитываются различные факторы, в том числе возможные деформации основания, характерные для всех или только отдельных видов подземных конструкций. К примеру, расчет фундаментной плиты на продавливание относится к специфическим вычислениям, а определение несущей способности производится при проектировании любых фундаментов.

Продавливающая нагрузка

Плитный фундамент представляет собой конструкцию, в которой ширина и длина имеют показатели, значительно превышающие ее толщину. В этом случае сосредоточенные нагрузки могут вызвать локальное продавливание бетонного монолита, к примеру, в месте расположения массивного оборудования малой площади, сваи или одной из колонн. Точно выполненный расчет позволяет обойти подобные явления путем усиления конструкции, а именно:

  • увеличения толщины бетонной плиты, зачастую – только в местах сосредоточения нагрузок;
  • расширения подошвы опирающейся конструкции;
  • укладки дополнительных арматурных стержней и наращивания защитного слоя бетона в зоне действия точечной нагрузки;
  • повышения марки бетонного раствора.

Так как сила давления на фундаментную плиту от колонны или столба затрагивает небольшую площадь, ее показатели могут достигать значительных величин. От основания контактной поверхности вглубь фундамента сосредоточенная нагрузка распределяется под углом 45 градусов, что формирует в теле плиты опорную пирамиду, принимающую на себя основное давление от колонны. В результате, на границе между нагруженной и незадействованной частью бетонного монолита постоянно присутствуют растягивающие усилия, что губительно влияет на искусственный камень.

Чем тоньше фундаментная плита или меньше опорная площадь колонны, тем более пагубное воздействие на монолитный бетон оказывает продавливающая нагрузка.

Наглядным примером может служить человек, шагающий по неутрамбованному снегу. Нагрузка от его веса сосредотачивается то на одной, то на другой ноге, поэтому настил с легкостью продавливается. Но стоит только путнику встать на лыжи, как проблемы исчезают, так как опорная площадь увеличивается, за счет чего масса человека начинает распределяться по поверхности снега равномернее. Что касается плитного фундамента, то увеличение его толщины, также как и расширение контактной площади с колонной, приводит к более удачной дислокации нагрузок.

Читать еще:  Устройство дренажной системы водоотвода от фундамента зданий

Рассматривая продавливание фундаментной плиты, нельзя обойти частный пример, касающийся точечных свайных опор. В этом случае на плитный ростверк тоже воздействуют сосредоточенные нагрузки, но их распределение в бетонном монолите происходит снизу вверх. Другими словами, схема, описанная выше, получается перевернутой.

Наиболее критичными для бетонной плиты считаются продавливающие нагрузки, действующие сразу в двух направлениях – снизу и сверху, но в разных плоскостях. К примеру, когда колонна расположена между сваями. В этом случае возрастает вероятность продавливания плитного ростверка сразу в нескольких местах.

Расчет на продавливающие нагрузки

Обеспечить запас прочности на продавливание фундаментной плиты, не превысив разумных пределов, поможет соответствующий расчет. Им не стоит пренебрегать в случаях присутствия сосредоточенных нагрузок, иначе затраченные материальные средства на возведение фундамента и наземной части дома окажутся напрасными. Экономия на проекте, в данной ситуации, может привести к фатальным результатам.

Расчет на продавливание плитного фундамента производится для определения основных параметров конструкции, таких как:

  • толщина плиты;
  • общая площадь арматуры – количество и диаметр стержней;
  • класс бетона.

Величины определяются индивидуально, исходя из конструктивных особенностей строения и геологических изысканий грунта на участке. Сам расчет производится по формулам и требованиям государственных или отраслевых нормативов. Привязка объекта к местности выполняется персонально.

Прежде всего, выясняется рабочая толщина монолитной плиты без учета защитного слоя бетона, расположенного с обратной от воздействующей нагрузки стороны. К примеру, если толщина плитного фундамента составляет 500мм, а расстояние от арматурных стержней до ближайшей наружной плоскости монолита – 45мм, то в расчете будет участвовать высота плиты, составляющая 455мм. Этот показатель прибавляется ко всем четырем сторонам опорной части колонны, в результате чего получается размер нижнего основания пирамиды продавливания.

Алгоритм и используемые при расчете плитного фундамента на продавливание формулы зависят от варианта расположения колонн:

  • внутри периметра плиты;
  • у края плиты;
  • возле стен.

Расчетный показатель сосредоточенной силы не должен превышать максимальную нагрузку, которую способен воспринимать бетон определенной марки, усиленный арматурным каркасом. Данное условие является основным для всех расчетов на продавливание. Следует учитывать, что поперечное армирование в значительной степени увеличивает восприятие продавливающих усилий, равномерно распределяя их в толще фундаментной плиты и расширяя зону опорной пирамиды. Дополнительные вертикальные стержни концентрированно располагают в зоне установки колонн, а не по всей площади плиты, в результате чего удается избежать перегруженности фундамента арматурой.

Коэффициент армирования является важной составляющей расчета, поэтому он закладывается еще на стадии проектирования.

Если при расчете плиты на продавливание основное требование по нагрузкам не обеспечивается, то инженеры используют локальное утолщение фундаментной плиты с помощью банкетки. Размеры ее сторон выбирают таким образом, чтобы они могли перекрывать площадь пирамиды продавливания на уровне стыковки банкетки и плиты. Расчет и корректировки продолжают до тех пор, пока значение сосредоточенной нагрузки не окажется ниже максимально возможного усилия, воспринимаемого бетоном.

Расчет продавливания фундаментной плиты

Расчет продавливания фундаментной плитыПроводя расчет плиты фундамента на продавливание, можно с точностью определить габариты монолитного блока и обеспечить нужный уровень прочности фундамента (с запасом). Основная цель проведения расчетов – добиться оптимальных прочностных показателей основания, определив минимально необходимое количество материалов, марку бетонной смеси, способ армирования. Это позволит быть уверенным в эксплуатационных показателях сооружения, потратив наименьшую сумму (насколько это возможно). Способ исчисления зависит от особенностей сооружения будущей конструкции, поэтому в каждом случае его следует проводить в соответствии с имеющимися показателями.

Размещение плит с колоннами внутри периметра

Проводя расчет основания на продавливание колонной (столбами), нужно учитывать вид его конструкции:

  • Плита расположена между столбами.
  • Столб установлен на основание.
  • Все элементы фундамента взаимно сопряжены.

Для всех перечисленных видов конструкции основания существует общее условие: показатель сосредоточенного усилия нагрузки должен быть меньше, чем уровень выдерживаемой силы используемого бетонного раствора (С Схема отдельного основания под колонну

Уровень разгружающей силы фундаментной конструкции плитного типа равен производимой нагрузке собственной массой, которую ограничивает контур площади. Как найти первую уже известно, поэтому ищем вторую:

Н см = (С сеч1 + В пл)(С сеч2 + В пл).

Продавливание фундаментного перекрытия колонной, расположенной над ним, находится по формуле:

С = С сеч – Д сила.

Если конструкция подразумевает сопряжение элементов (основание и колонну), следует применять формулу:

С = С сеч – Д сила – Р усил.

Р усил – уровень усиления разгружающего типа от давления на поверхность почвы.

Для значительного увеличения прочности перекрытий применяется поперечное армирование. Качественное восприятие нагрузок армопоясом практически равно этому показателю бетона. Проводить расчет на продавливание актуально только для плитного основания, так как применение ленточного подразумевает равномерное распределение нагрузок.

Плита с колоннами у края

Еще при проектировании фундамента определяется способ армирования. Арматура, расположенная вертикально, делает конструкции более прочной. Распространенная практика – создание пространственного каркаса, который состоит из 2 горизонтальных поясов арматуры, скрепленных вертикальными прутьями. Для скрепления элементов нужно использовать хомуты из пластика или специальную проволоку – это позволит избежать образования очагов коррозии, появление которых провоцирует внутреннее напряжение во время сварочных работ. Избежав коррозии, ресурс основания становиться значительно больше.

Уменьшить стоимость фундаментной перегородки можно за счет использования вертикального армирования исключительно в местах давления колонн.

Расчет продавливания плитного основания

Проводя расчет для колонн, расположенных у края основания, должен учитываться самый неблагоприятный показатель. Рассчитать продавливание в таком случае можно по формуле:

1 > М у / М макс + М х / М ульт + С / С макс.

М у / М макс – показатели сосредоточенных моментов, которые действуют в конкретных направлениях

М ульт – значение предельных моментов, которые способно выдерживать перекрытие в конкретных направлениях.

Проводя расчет площади, исчисляя придавливание, стоит учесть промежуток между гранями колонны, ширину монолитного основания (Ш осн), размер колонны (С сеч1 и С сеч2), расстояние между колонной и краем фундамента (Р):

П прод = 0.5 В пл (С сеч1 + С сеч1 (Ш осн / 0.5 В пл) + 2 С сеч2 + 2Р + В пл).

Рассчитывая продавливание, нужно взять во внимание отверстия в основании для коммуникационных узлов, ревизионных люков и т. п. Если такие элементы находятся от колонны на расстоянии, меньшем 6В пл – проводятся исчисления с учетом этих моментов. Пример формул в таком случае аналогичен предыдущим, но стоит учесть некоторые особенности:

  • К краям отверстия проводятся 2 прямые линии от центра колонны.
  • Фундаментную плиту рассчитывают без учета сектора, находящегося между этими линиями.

Пример расчета

Как пример, возьмем случай, когда на поверхность перекрытия действует установленная колонна – сосредоточенное давление (действует на определенный участок поверхности). В этом случае нужно определить силу продавливания.

  • Ширина основания (Ш осн): 220 см.
  • Класс бетона: В25 (Р бт = 9.7 кг/см2).
  • Нижняя грань перегородки от оси армопояса находится на расстоянии 0.25 мм.
  • Сила продавливания С прод = 3.5 Т.
  • Площадь продавливания (П род): 0.3 х 0.4 м.
  • Рабочая высота (Р выс): 2 м.

К бет

Подготовил
Самохин Олег Юрьевич

Расчет железобетонной плиты перекрытия на продавливание

Рис 1. К примеру расчета 40
1 – 1-е расчетное сечение, 2 – 2-е расчетное сечение

Цель: Проверка режима расчета на продавливание.

Задача: Проверить правильность анализа прочности на продавливание бетонного элемента с поперечной арматурой при действии сосредоточенной силы и изгибающих моментов и анализа прочности на продавливание за границей расположения поперечной арматуры.

Читать еще:  Устройство фундамента под дом своими руками

Ссылки: Пособие по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры (к СП 52-101-2003), 2005, с. 137-140.

Имя файла с исходными данными:

Соответствие нормативным документам: СП 52-101-2003, СП 63.13330.2012.

Исходные данные из источника:

h = 220 мм Толщина плиты
a×b = 500×800 мм Размеры сечения колонн
N = 800 кН Нагрузка, передающаяся с перекрытия на колонну
Mx,sup = 70 кН∙м Момент в сечении колонны по верхней грани плиты в

направлении оси Х

My,sup = 30 кН∙м То же, в направлении оси Y
Mx,inf = 60 кН∙м Момент в сечении колонны по нижней грани плиты в

направлении оси Х

My,inf = 27 кН∙м То же, в направлении оси Y
d = 6 мм Диаметр поперечной арматуры
Класс бетона
Класс арматуры
В30
А240

Исходные данные АРБАТ:
Коэффициент надежности по ответственности γn = 1

Площадка приложения нагрузки расположена внутри элемента

a = 500 мм
b = 800 мм
Рабочая высота сечения для продольной арматуры
вдоль оси X – 190 мм
вдоль оси Y – 190 мм

Бетон

Вид бетона: Тяжелый
Класс бетона: B30

Коэффициенты условий работы бетона

учет нагрузок длительного действия

учет характера разрушения

учет вертикального положения при бетонировании

учет замораживания/оттаивания и отрицательных температур

Нагрузки

Равномерное армирование

Класс арматуры: A240
Диаметр 6 мм

Приближение к зоне приложения нагрузки 75 мм
Расстояние между стержнями в ряду 60 мм
Число стержней в ряду 20
Расстояние между рядами 60 мм
Число рядов стержней 25

Усилия

Сравнение решений

прочность на продавливание бетонного элемента с поперечной арматурой при действии сосредоточенной силы и изгибающих моментов с векторами вдоль осей X, Y

прочность на продавливание от действия сосредоточенной силы бетонного элемента с поперечной арматурой за границей расположения поперечной арматуры

Комментарии

  1. В Пособии при расчете задачи принята усредненная рабочая высота плиты равной h = 190 мм. Это значение использовано в АРБАТ.
  2. В Пособии в примере приняты обозначения моментов в сечениях колонн Mx и My как моменты соответственно в направлениях осей Х и Y. В АРБАТ приняты обозначения Mx и My как моменты соответственно вокруг осей Х и Y, поэтому моменты в примере Пособия Mx и My соответствуют в АРБАТ моментам Mx и My. В АРБАТ используются значения сумм моментов Msup и Minf по верхней и по нижним граням плиты. Таким образом, Mx = 30 + 27 = 57 кН∙м, My = 70 + 60 = 130 кН∙м.
  3. Число стержней в ряду 20 и число рядов стержней 25 приняты в соответствии с размерами, указанными на чертеже в Пособии.
  4. Различие второго фактора с решением из Пособия обусловлено следующими причинами:
  • в задаче границы второго расчетного контура рассматривают на расстоянии 0,5h от границы расположения всей заданной поперечной арматуры. Кроме того, в Пособии при вычислении геометрических характеристик были ошибочно использованы размеры контура на 0,5h большие, чем размеры рассматриваемого контура. В АРБАТ границы второго расчетного контура приняты на расстоянии 0,5h от границы расположения учитываемой в расчете поперечной арматуры;
  • в Пособии данную проверку прочности выполняют с учетом изгибающих моментов. В АРБАТ проверка выполняется в соответствии с п.6.2.48 СП 52-101-2003 по формуле расчета на продавливание при действии только сосредоточенной силы.

Расчет на продавливание плиты перекрытия

Обычная плита перекрытия является железобетонной конструкцией, длина которой равна ширине комнаты или половине ширины помещения внутри здания.

Схема монолитного перекрытия.

Она может опираться на контур помещения полностью или же иметь одну свободную от опоры сторону.

Расчет таких конструкций хорошо известен. Значительно сложнее выполнить вычисление поверхности на продавливание, необходимость в котором возникает, если на ограниченную площадь действует равномерно распределенная нагрузка. Такую нагрузку иногда называют сосредоточенной в пределах небольшой площадки на плите.

Основные параметры

Предварительный расчет на продавливание целесообразно выполнить для определения размеров создаваемой площади перекрытия, то есть при ее конструировании. При этом отдельно следует рассчитать ее размеры в случае предполагаемого действия только одной сосредоточенной нагрузки в середине плиты и при одновременном воздействии на нее указанной нагрузки и изгибающего момента.

Для готовых стандартных плит возможны следующие варианты вычислений:

Схема арматуры против продавливания перекрытий.

  • нагрузка расположена у края;
  • нагрузка расположена в углу;
  • в зоне действия нагрузки имеется поперечная арматура;
  • конструкция перекрытия имеет поперечную арматуру из профилированной стали по всей длине и ширине;
  • колонна имеет расширенные части (капители);
  • фундаментные плиты имеют банкетки;
  • вблизи зоны продавливания имеются отверстия или проемы;
  • конструкция расположена непосредственно у стены.

Расчет на продавливание

Следует отметить, что сегодня среди специалистов согласия относительно того, как же рассчитывать прочность плиты, если на нее действует нагрузка, сосредоточенная в ограниченном контуре. Однако существуют пособия, которые помогут хозяину, решившему построить дом с колоннами, выполнить вычисления. Они и не очень простые, поэтому придется усвоить, возможно, ранее неизвестные ему термины из области сопротивления материалов.

Подходящим документом в этом отношении является дополнение к СП 52‑101‑2003, которое называется “Пособие по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры”. Оно полезно и тем, что в нем имеются примеры расчетов, которые можно использовать и для индивидуального вычисления.

Таблица нагрузки перекрытий.

На рисунке 3 представлены два варианта размещения нагруженной площадки: а) внутри плоского элемента; б), в) у края плоского элемента. На рисунке 3 обозначено: 1 – площадь нагрузки; 2 ‑расчетный контур варианта а); 2′- расчетный контур вариантов б) и в); 3 – пересечение осей X1 и Y2, определяющее центр тяжести контура; 4 ‑ пересечения осей X и Y, определяющее центр тяжести площадки нагрузки; 5 – граница (край) плоского элемента.

Здесь учитывают действующую сосредоточенную силу и изгибающий момент. Поперечное сечение, принимающее нагрузку, определяют на расстоянии h /2, где h рабочая высота плиты. Чтобы выполнить расчет, необходимо знать сопротивление бетона растяжению Rbt и сопротивление растяжению поперечной арматуры Rsw.

В качестве примера проверим на продавливание не армированную поверхность перекрытия по следующим данным:

Схема сборной плиты перекрытия.

  • толщина плиты 220 мм (в качестве рабочей толщины считаем h =190 мм);
  • сверху и снизу примыкают колонны сечением 500×800 мм;
  • нагрузка, передаваемая от нее на колонну, N=800 кН;
  • момент по верхней грани в направлении размера колонны в 500 мм равен Mx,sup = 70 кНм;
  • момент по нижней грани в направлении размера колонны в 500 мм равен Mx,inf = 60 кНм;
  • момент по верхней грани в направлении размера колонны в 800 мм равен Mx,sup = 30 кНм;
  • момент по нижней грани в направлении размера колонны в 500 мм равен Mx,inf = 27 кНм;
  • бетон класса В30, допустимая нагрузка Rbt = 1,15 МПа.

Для решения поставленной задачи необходимо проверить выполнение условия:

Схема расчета монолитного перекрытия.

  • (F/u) + (M/Wb) ≤ Rbt×h ;
  • F = N = 800кН – сосредоточенная сила от внешней нагрузки;
  • и – периметр расчетного контура, он находится на расстоянии, равном половине рабочей толщины плиты;
  • и = 2(а + b + 2ho) = 2(500 + 800 + 2.190) = 3360 мм;
  • Мх = (Mx,sup + Mx,inf )/2 = (70 + 60)/2 = 65 кНм;
  • Му = (My,sup + Му, inf)/2 = (30 + 27)/2 = 28,5 кНм;
  • Wb – момент сопротивления определяют для меньшей и большей стороны контура;
  • Wb = (а+h )×[ (а+h )/3+b+ h ] = (500+190)×[ (500+190)/3+800+ 190] = 841800 мм2;
  • Wb,y = (b+h )×[ (b+h )/3+a+ h ] = (800+190)×[ (800+190)/3+500+ 190] = 1009800 мм2;
  • находим сумму отношений Мх/Wb+ Му/ Wb,y= 65∙10 6 /841800 + 28,5∙10 6 /1009800 = 105,4 Н/мм;
  • находим величину F/u = 800∙10 3 /3360 = 238,1 Н/мм;
  • находим значение Rbt×h = 1,15∙190 = 218,5 Н/мм;
  • проверяем условие (1) 238,1+105,4 = 343,5 Н/мм, что больше, чем Rbt×h =218,5 Н/мм, то есть условие выполняется и перекрытие следует усилить арматурой.

Способы вычислений

В настоящее время существуют программы, позволяющие выполнить расчет конструкций на продавливание.

Например, с помощью программы можно рассчитать максимальную нагрузку, которую выдержит плита перекрытия. Для этого необходимо иметь такие данные: рабочую длину (без учета глубины опоры ее торцов), рабочую толщину, площадь продавливания и класс бетона.

Если же известна продавливающая сила, действующая на фундаментную плиту, то необходимо знать класс бетона, длину и ширину базы колонны, расстояние (по длине и ширине) до края сваи и диаметр вертикальных стержней (если они необходимы). В результате будет известно, нужно ли ее армировать вертикальными стержнями, а по диаметру стержней (если он был задан) будет рассчитано необходимое их количество на единицу площади.

Расчет монолитной фундаментной плиты: пример, количество арматуры

Существует только два типа фундаментов, которые подходят для строительства практически любых зданий: свайный и плитный. Они позволяют возводить здания на грунтах с плохими характеристиками с минимальными затратами. Монолитную плиту в качестве фундамента стоит выбрать по многим причинам, но чтобы она была прочной и надежной необходимо выполнить ее грамотный расчет.

  • 1 Преимущества фундаментной плиты
  • 2 Изучение характеристик грунта
  • 3 Расчет толщины плиты
  • 4 Пример расчета
  • 5 Расчет арматуры

Преимущества фундаментной плиты

К достоинствам конструкции можно отнести:

  • строительство на грунтах с плохими характеристиками;
  • возможность возведения крупных объектов;
  • возможность самостоятельной заливки;
  • высокая несущая способность;
  • предотвращение локальных деформаций;
  • устойчивость к воздействию сил морозного пучения.

К слабым сторонам такого типа фундаментов относят:

  • нецелесообразность использования на участках с уклоном;
  • большой расход бетона и арматуры;
  • по сравнению с готовыми элементами фундамента, устройство монолитной плиты требует дополнительного времени на набор прочности бетоном;
  • сложный расчет.

Изучение характеристик грунта

Перед тем как приступить к расчету любого типа фундамента определяют характеристики основания под него. К основным и наиболее важным моментам относят:

  • водонасыщенность;
  • несущую способность.

При строительстве крупных объектов перед началом разработки проектной документации выполняют полноценные геологические изыскания, которые включают в себя:

  • бурение скважин;
  • лабораторные исследования;
  • разработку отчета о характеристиках основания.

В отчете предоставляются все значения, полученные в ходе первых двух этапов. Полный комплекс геологических изысканий стоит дорого. При проектировании частного дома в нем чаще всего нет необходимости. Изучение почвы выполняются двумя методами:

Отрывку шурфов выполняют вручную. Для этого лопатой выкапывают яму, глубиной на 50 см ниже предполагаемой отметки подошвы фундамента. Почву изучают по срезу, определяют примерно тип несущего слоя и наличие в нем воды. Если грунт слишком насыщен водой, рекомендуется остановиться на свайных опорах под здание.

Второй вариант изучения характеристик основания под дом выполняют ручным буром. Анализ проводят по кускам почвы на лопастях.

Важно! При проведении мероприятий необходимо выбирать несколько точек для изучения. Они должны располагаться под пятном застройки. Это позволит наиболее тщательно изучить тип почвы.

Определившись с основанием, для него выясняют оптимальное удельное давление на грунт. Величина потребуется в дальнейшем расчете, пример которого представлен далее. Значение принимают по таблице.

Тип исследуемого грунта Оптимальное удельное давление на грунт, кг/см2
Песок пылеватый и мелкий 0,35
Песок средней крупности 0,25
Супесь* 0,50
Суглинок 0,35
Пластичная глина 0,25
Твердая глина* 0,50

*При данном типе грунта основания более экономичным может оказаться ленточный вариант, поэтому нужно рассчитать смету на два типа фундамента и выбрать тот, который будет стоить дешевле.

Расчет толщины плиты

Расчет выполняется по СП «Проектирование и устройство оснований и фундаментов зданий и сооружений» и по руководству «Руководство по проектированию плитных фундаментов каркасных зданий и сооружений башенного типа» в два этапа:

  • сбор нагрузок;
  • расчет по несущей способности.

Сбор нагрузок включает в себя проведение работ по вычислению общей массы дома с учетом веса снегового покрова, мебели, оборудования и людей. Значения для домов из различных материалов можно взять из таблицы.

Тип нагрузки Значение Коэффициент надежности
Стены и перегородки
Кирпич 640 мм 1150 кг/м2 1,2
Кирпич 510 мм 920 кг/м2
Кирпич 380 мм с утеплением 150 мм 690 кг/м2
Брус 200 мм 160 кг/м2 1,1
Брус 150 мм 120 кг/м2
Каркасные 150 мм с утеплителем 50 кг/м2
Перегородки гипсокартонные 80 мм 30-35 кг/м2 1,2
Перегородки кирпичные 120 мм 220 кг/м2
Перекрытия
Железобетонные 220 мм с цементно-песчаной стяжкой 30 мм 625 кг/м2 1,2 — для сборных и 1,3 — для монолита
Деревянные по балкам 150 кг/м2 1,1
Крыша по деревянным стропилам
С металлическим покрытием 60 кг/м2 1,1
С керамическим покрытием 120 кг/м2
С битумным покрытием 70 кг/м2
Временные нагрузки
Полезная для жилых зданий 150 кг/м2 1,2
Снеговая В зависимости от района строительства по п. 10.1 СП «Нагрузки и воздействия». Снеговой район определяется по СП «строительная климатология». 1,4

Важно! В таблице уже учитывается толщина конструкций. Для вычисления массы остается лишь умножить на площадь.

Кроме этого, каждую нагрузку необходимо умножить на коэффициент надежности. Он необходим для обеспечения запаса по несущей способности конструкции из бетона и предотвращения проблем при незначительных ошибках строителей или изменениях условий эксплуатации (например, смена назначения здания). Все коэффициенты принимаются по СП «Нагрузки и воздействия».

Для различных нагрузок, коэффициент отличается и находится в пределах 1,05-1,4. Точные значения также приведены в таблице. Для фундамента из бетона по монолитной технологии принимают коэффициент 1,3.

Важно! Если уклон кровли составляет более 60 градусов, снеговую нагрузку в расчете не учитывают, поскольку при такой крутизне ската, снег не скапливается на нем.

Общую площадь всех конструкций умножают на массу, приведенную в таблице и коэффициент, после чего, складывая, получают суммарный вес дома без учета фундаментов.

Основная формула для вычислений имеет следующий вид:

где P1 -удельная нагрузка на грунт без учета фундамента, M1 — суммарная нагрузка от дома, полученная при сборе нагрузок, S — площадь плиты из бетона.

Далее необходимо рассчитать разницу (Δ) между полученным значением и числом, приведенным в таблице выше, в зависимости от типа грунта.

где P — табличное значение несущей способности грунта.

где М2 — требуемая масса фундамента (больше этой массы строить фундамент нельзя), S — площадь плиты из бетона.

где t — толщина заливки бетона, а 2500 кг/м3 — плотность одного кубического метра железобетонного фундамента.

Далее толщина округляется до ближайшей большей и меньшей величины кратной 5 см. После выполняется проверка, при которой разница между расчетным и оптимальным давлением на грунт не должна превышать 25% в любую сторону.

Совет! Если при расчете получается, что толщина слоя бетона превышает 350 мм, рекомендуется рассмотреть такие типы конструкции как ленточный фундамент, столбчатый или плита с ребрами жесткости.

Помимо толщины потребуется подобрать подходящий диаметр армирования, а также выполнить расчет количества арматуры для бетона.

Важно! Если в результате расчета у вас получится толщина плиты более 35 см, это указывает на то, что плитный фундамент избыточен в данных условиях, нужно посчитать ленточный и свайный фундаменты, возможно они окажутся дешевле. Если же толщина вышла меньше 15 см, значит здание слишком тяжелое для данного грунта и нужен точный расчет и геологические исследования.

Пример расчета

Пример предусматривает следующие исходные данные:

  • одноэтажный дом с мансардой размерами в плане 8 м на 10 м;
  • стены выполнены из силикатного кирпича толщиной 380 мм, общая площадь стен (4 наружных высотой 4,5 м) равняется 162 м²;
  • площадь внутренних перегородок из гипсокартона равняется 100 м²;
  • кровля металлическая (четырехскатная, уклон 30ᵒ), площадь равняется 8 м * 10 м/cosα (угол наклона кровли) = 8 м * 10 м/0,87 = 91 м² (также понадобится при вычислении снеговой нагрузки);
  • тип грунта — суглинок, несущая способность = 0,32 кг/см² (получено при геологических изысканиях);
  • снеговая нагрузка — 180 кг/м²;
  • перекрытия деревянные, общей площадью 160 м2 (также понадобится при вычислении полезной нагрузки).

Сбор нагрузок на фундамент выполняется в табличной форме:

Нормативная нагрузка Коэффициент надежности Расчетная нагрузка
Стены: 162 м2 * 690 кг/м2 = 111780 кг 1,1 122958 кг
Перегородки: 100 м2 * 30 кг/м2 = 3000 кг 1,2 3600 кг
Перекрытия: 160 м2 * 150 кг/м2 = 24000 кг 1,1 26400 кг
Крыша: 91 м2 * 60 кг/м2 = 5460 кг 1,1 6006 кг
Полезная нагрузка: 160 м2 * 150 кг/м2 = 24000 кг 1,2 28800 кг
Снеговая: 91 м2 * 180 кг/м2 = 16380 кг 1,4 22932 кг
ИТОГО: 210696 кг

Площадь плиты под здание принимается с учетом того, что ширина плиты больше, чем ширина дома на 10 см. S = 810 см * 1010 см = 818100 см² = 81,81 м2.

Удельная нагрузка на грунт от дома = 210696 кг/818100 см2 = 0,26 кг/см2.

Δ = 0,32 — 0,26 = 0,06 кг/см2.

М = Δ*S = 0,06 кг/см2 * 818100 см2= 49086 кг.

t = (49086 кг/2500 м3)/81,81 м2 = 0,24 м = 24 см.

Толщину плиты можно принять 20 см или 25 см.

Выполняем проверку для 20 см:

  1. 0,2 м * 81,81 м2 =16,36 м3 — объем плиты;
  2. 16,36 м3 * 2500 кг/м3 = 40905 кг — масса плиты;
  3. 40905 + 210696 = 251601 кг — нагрузка от дома с фундаментом;
  4. 251601 кг/ 818100 см2 = 0,31 кг/см² — фактическое давление на грунт меньше оптимального не более чем на 25 %;
  5. (0,32-0,31)*100%/0,32 = 3%

Ссылка на основную публикацию
Adblock
detector